
NOTATION 

L, length of investigated section of pipe; t, time of passage of liquid over section; 
Vav , mean flow velocity; v, particle velocity~ M, magnetization per unit volume of the liquid; 
I, intensity of NMR signal; f(v), particle velocity distribution function. 
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Quantitative data are obtained in veloeitypulsation damping and the amount by which 
particle coalescence exceeds the turbulence microscale is calculated for the pipe 
flow of concentrated emulsions. 

The motion of two-phase systems is generally described with the assumption that the laws 
of conservation of mass, momentum, and energy are satisfied. Meanwhile, the complete system 
of Navier--Stokes equations should consider the effect of disperse-phase particles on the mo- 
tion of the dispersion medium, while the equation of motion of the particles should reflect, 
along with external body forces and forces of interaction between the particles, the effect 
of the motion of the dispersion medium. As a result, to obtain a closed system of equations, 
it is necessary to have a kinetic equation describing the dynamic state of the disperse 
phase, together with the corresponding boundary conditions [i, 2]. Such a system of equa- 
tions is particularly valuable is analyzing similitude among two-phase flows [3], although 
it is difficult to obtain final theoretical relations, such as for turbulent flow. 

However, the large amount of empirical data available on turbulent flows of unstable 
emulsions, connected with study of the mixing of mutually insoluble liquids and the rate of 
phase separation in various commercial processes, can be used to construct a partial semi- 
phenomenological model of a two-phase system. This will provide us a sufficiently simple 
basis on which to perform engineering calculations connected with the movement of unstable 
emulsions. At the same time, the model, being in good agreement with the empirical data, 
will serve as a reliable basis for semiempirically analyzing the assumptions necessary to 
analytically study the complete system of equations for a two-phase system. 

The goal of the present work is to study anomalous effects and is a consequence of the 
inadequacy of the homogeneous model of a two-phase system in the case of coarse-dispersed 
emulsions with a nonequilibrium disperse phase. We also hope to obtain quantitative estimates 
of the above effects using experimental data. 

!nverse Effect of Disperse-Phase Concentration on Turbulent 

Flow of an Emulsion in a Pipe 

It has been shown for emulsions of ~mmiscible liquids of similar densities that the mo- 
tion of disperse-phase drops in the inertial range of uniform turbulent flow nearly coincides 
with the motion of the dispersion medium [4]. Also, it is known that an emulsion with a low- 
viscosity dispersion medium is capable of retaining Newtonian rheological properties up to 
W = 0.5 in the turbulent regime [5]. In determining effective viscosity in accordance with 
the Darcy-Weisbach equation for a homogeneous liquid, the Newtonian behavior of the emulsion 
was controlled by comparing measured and theoretical velocity profiles. 

We will show that the turbulence damping in mixers noted in [6] is consisted with the 
available empirical data for pipes through which unstable emulsions are being pumped in a 
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regime which prevents layering of the phases with coalescence of the disperse phase. If it 
is assumed that the condition ~e(W)~-- V,e [8] holds in the motion of concentrated emulsions 
for such a quasihomogeneous structure -- this condition having been obtained for homogeneous 
liquids -- then we~write the following on the basis of balance of the pressure drop and 
drag: re(W) = 4Xe(W)/8U. Then, considering the uniformity of turbulent flow in a pipe at 
sufficiently large Reynolds number [4] and using the law ~e(W) = ~e/f(W) ~ established 
earlier for mixers [6], we have: 

(w) = xdf (w), (1) 

where X e is determined from the Blasius formula on the basis of the effective viscosity of a 
finely dispersed emulsion in accordance, for example, with the semiempirical relations [9]: 

>.e=  >~ exp [K~W/(1 - -  W)]. (2) 

Equation (i) agrees, to within the numerical coefficient in the expression f(W) = 1 + 
n(W), with the result in [i0] obtained for turbulent flow along a 0.05-m-diameter pipe of a 
concentrated emulsion of transformer oil in water: le(W ) = ke/(l + 1.125W). Thus, despite 
certain differences in the hydrodynamic structure of a mixer and a pipe, the above should 
mean that the phenomenon of pulsation damping should also be important in the pipe. Moreover, 
this effect will become predominant [6] whenacoarse-dispersedflowcontains stabilizers prevent- 
ing coalescence. However, in finely dispersed emulsions, it is only due to the process of 
coalescence in flow along fairly long pipes that drops with 6 > Io, capable of reducing the 
magnitude of turbulent pulsations, may be formed. 

It is interesting to note that, by calculating the Reynolds number from the effective 
viscosity of a finely dispersed emulsion, the concentration relation in Eq. (i), for example, 
may be related to the quantity Pe in the expression for Re e. Then, without allowing for the 
effect of pulsation damping, the well-established exponential increase in effective viscosity 
(2) with an increase in concentration will, at the corresponding drop sizes, be diminished 
by a factor of f(W) 4. As a result, the applicability of Einstein's linear law to concentrated 
emulsions is a consequence of pulsation damping within the framework of the homogeneous 
liquid model, rather than a basis for interpreting the physical essence of the process re- 
flected by f(W), in accordance with [ii]. 

We will make use of this fact to quantitatively evaluate the constants of the linear 
concentration relation for pipe conditions. Figure la shows how expression of f(W) 4, at 
certain empirically determined values of n, lessen the increase in effective viscosity. 

The results of calculations shown in Fig. ib indicate that f(W) can be used to actually 
linearize viscosity curves corresponding to finely dispersed concentrated emulsions. For 
example, the authors of [5] experimentally established the relation ~e/~c = exp(2.5W) for a 
system composed of water and thin oil. The effective viscosity remains roughly the same if 
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Fig. i. Evaluation of the effect of turbulence damping 
in a pipe on the basis of experimental studies of the 
concentration function f(W) and the effective viscosity 
Pe/Pc: a) i -- ~ = 1.125 [i0]; 2 -- 0.96 [13]; 3 -- 0.75; 
4 -- 0.5; 5 -- 0.25; b) theoretical curves: I -- Eq. (2), 
K R = 2; II -- exp(2.5W); III -- i+ 2.5W; IV -- exp(2.5W)/ 
(I+0.5W) ; V -- exp[2W/(l--W)]/(l+0.75W)4; experiment: 
I, 2 -- [5]; 3 -- [12]. 
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the disperse phase is replaced by thick oil under the same conditions. Allowing for the 
fact that an increase in the viscosity of the disperse phase from 0.018 to 0.260 Pa.sec in- 
creases the size of the dispersed drops without significantly affecting the character of the 
viscosity relation, the agreement between curve IV and the experimental point 2 in Fig. ib 
reflects the effect of pulsation damping at n = 0.5. Similarly, with slight deviations, the 
empirical viscosity data in [12] for a finely dispersed emulsion of carbon tetrachloride in 
water reduces to Einstein's linear law -- III -- on the basis of curve 3 in Fig. la. In [13], 
experimental studies of turbulence damping in jet flows of two-phase systems made it possible 
to establish the value ~ = 0.96. 

Thus, in contrast to mixers, where 3.14 ~ q ~ 9.0 [6], turbulence damping in pipes is 
characterized by ~ = 0.5-1.125. The decrease in q is quite satisfactorily explained by a 
decrease in turbulence intensity from 50-60% in mixers [14] to 3-4% in pipes [4]. 

Calculation of Coalescence 

Drop size changes with the turbulent flow of unstable emulsions in pipes, due to co- 
alescence and comminution of the drops. In the present work, the breakup of coalesced drops 
is precluded by the condition %o < ~ < dm, which is satisfied by the nonequilibrium disperse 
phase. Based on the material balance of the disperse-phase volume and the number of drops 
of average size, drop coalescence by means of the pairwise union of colliding droplets is 
described by a system of two differential equations [15]: 

d8 8 dn dn 0 n 

dl 3n dl dl 2 U (3) 

The coalescence process is calculated with allowance for the following assumptions. It 
is assumed that the turbulent flow is uniform and that the concentrated emulsion in the re- 
gion of change in W being investigated does not display any anomalous rheological properties. 
The effect of drop concentration is reflected by the effective viscosity of the emulsion and 
an additive term with the concentration relation in the formula ~e(W) = ~e/f(W) ~ In 
coarse-dispersed emulsions at ~o > ~, the frequency of drop coalescence under the influence 
of turbulent pulsations, with allowance for the opposite effect of the disperse phase, has 
the form 

4VV 
o =Ko V ~  f(~)~ (4) 

We will approximate the average magnitude of the velocity pulsations in a finely dis- 
persed emulsion with the expression /%e/8U. The solution of system (3) relative to the drop 
diameter, with the boundary condition 81t=o = 8o > %o at W = const, is written as follows: 

6 0.4 I/2 w 
= 1 + K ~  ~ . . . .  0 , 5 , - ,  o , 1 2 5  l .  

6o 3 ] f ~  6 o ( l + ~ w )  Ke e (5) 

Figure 2 shows the results of calculation of drop coalescence from I00 to 500 ~m under 
the following conditions: D = 0.2 m, Pc = 0.005 Pa.sec, Pc = 866 kg/m 3, Pd = 1163 kg/m 3, 
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Fig. 2. Dependence of pipe length I (m) on 
volume concentration of the disperse phase 
W with a constant degree of drop enlargement 
8/~o = 5, 6o = iO0 ~m; 1-3) n = O; 0.5; 
1.125. 
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AP/A/ = i00 Pa/m, Kv = 0.26'i0 -4, KR = 1.0. It turned out that the effect of velocity pulsa- 
tion damping on the coalescence of coarse-dispersed drops is insignificant compared to con- 
centration. An increase in n up to 1.125 increases the length of pipe needed to obtain a 
specified degree of coalescence by 2.8-13%, depending on the value of W. It is more im- 
portant to note that flow of an emulsion with a nonequilibrium disperse phase may become 
unsteady. 

Relaxation Model of Flow of Unstable Emulsions 

Based on the above analysis of coalescence in concentrated emulsions and the relation 
adopted for pulsation damping, we may make the following conclusions relative to f(W). When 
the drop sizes in a turbulent flow of a finely dispersed emulsions are less than the micro- 
scopic scale of the turbulence, the numerical coefficient in the linear expression for f(W) 
is zero, and the effect of the concentration of the disperse phase is completely character- 
ized by the effective viscosity. This effect was studied in [16]. As drop size increases 
due to coalescence, the sizes will approach the inertial range. In this range, the inter- 
action of the drops with eddies possessing kinetic energy will be of a dynamic nature. In 
this case, N will increase and reach a maximum value in accordance with the hydrodynamic pa- 
rameters of the flow and the equilibrium drop size. This is indirectly confirmed by the 
degeneration of f(W) into a constant at large values of the Weber number [17]. 

In turn, the drop coalescence which completely determines the rate of increase in ~ is 
calculated by means of system (3), substituting the kinetic equation for monodisperse emul- 
sions. In linear approximation (5), f(W) is written thus 

6 - -  )~o ) 
~1 (~) = ~/ d.t - -  )vo " (6) 

Allowing for the variable ~(6) in the expression (4) for drop coalescence frequency and 
after making simple transformations, the refined solution of system (3), with the boundary 
condition ~]/=o = %o, has the form 

i j - - 1  = l .  (7) 
dm -- )~o / 0,092K~1Wz 

Thus, the quasihomogeneous turbulent flow of an emulsion with a nonequilibrium disperse 
phase, accompanied by drop coalescence, is unsteady and at Xo < 8 < d m is relaxational in char- 
acter. On the basis of the Darcy-~eisbach equation, the pressure drop will change in ac- 
cordance with the expression 

dP Le ~U ~ 

dl 1 + ~1 (l)W 2D 
(8) 

Steady-state flow is established after full completion of drop enlargement with ~]l=lk = 
dm, ~(/k) = n and is subsequently maintained as a result of dynamic equilibrium between the 
drop comminution and coalescence rates. It was this very regime that was reproduced and 
studied experimentally in [i0], and n = 1.125 corresponded to the maximum equilibrium drop 
size under the test conditions. Another reason for the appearance of transitional regimes 
is a shift in dynamic equilibrium in the disperse phase with a change in the cross section 
of the pipe, the passage of the emulsion through a valve, union, or other local resistance, 
and the addition of demulsifying agents and stabilizers. 

Let us examine the effect of coalescence of the disperse phase on the pressure loss in 
the pumping of unstable emulsions on the basis of the linear relation between drop size and 
pipe length Obtained in the first approximation (5). After integrating (8) with ~(1) = 
nl/1 k and the boundary condition PI/=o = Po, we have 

P ( I ) - - P o  _ 1 l n ( l @  ~W[ 
P (th) nW \ ---~--h ) ' (9)  

where P(/k) = %egeUalk/2D. The length of the nonequilibrium section of the pipe is deter- 
mined with Eq. (7) at 8 = dm, which reduces to Eq. (5) after taking the limit as ~ § 0. A 
sample calculation for the conditions chosen above at U = 0.88 m/see gave the following re- 

257 



sults. With a change in W from 0.i to 0.5 and fixed n = 0.5, turbulence damping is charac- 
terized by a reduction in the pressure drop by 2.4-10.4%. Under similar conditions, the 
value n = 1.125 corresponds to a reduction in the pressure drop relative to the maximum cal- 
culated from the effective viscosity of a finely dispersed emulsion from 5.2 to 20.7%. 

For rapidly coalescing systems, as K v § 1 the relaxation processes take place much 
more rapidly, and the pulsation damping effect is manifest on shorter sections of pipe. In- 
terpretation of the experimental data using the simple homogeneous model leads here to an 
anomalous reduction in %e relative to the Blasius formula. Thus, for a disperse system of 
low-viscosity liquids, this effect was seen at W = 0.35-0.50 with an increase in the tur- 
bulence level [18]. Equations (7) and (9), obtained on the basis of a two-phase model al- 
lowing for disperse-phase coalescence and velocity pulsation damping, reflects this effect. 
The fact that it does is additional evidence of its adequacy. 

Thus, the two-phase model makes it possible to unambiguously interpret available experi- 
mental data on the pipe flow of unstable emulsions which do not exhibit anomalous rheological 
properties. The individual physicochemical and hydrodynamic features of actual liquid sys- 
tems are reflected by the model constants Kv, ~, and K R. 

NOTATION 

%o, microscopic scale of turbulence; W, concentration of disperse phase; U, mean flow 
rate; ~e, ~e(W), velocity pulsations in finely and coarsely dispersed emulsions, respective- 
ly; f(W), concentration function reflecting the effect of turbulence damping; %e, effective 
drag coefficient; KR, viscosity relation constant; ~e, ~c, dynamic viscosity of emulsion and 
dispersion medium; ~, concentration function constant; ~o, 6, initial and running mean drop 
sizes; Re e = UDpe/~ e Reynolds number of emulsion; D, pipe diameter; Pe = Pc (I -- W) + pd W, 
density of emulsion; Pc, Pd, density of dispersion medium and disperse phase; dm, maximum 
drop size stable with respect to comminution; l, pipe length; n, number of drops per unit 
volume of emulsion; e, frequency of drop coalescence; Kv, constant of efficiency of drop col- 
lision under the influence of turbulent pulsations; Po, P, pressure at the initial and run- 
ning points of the pipe; ~k, length of nonequilibrium section of the pipe. 
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LAMINAR FLOW OF AN INCOMPRESSIBLE FLUID IN A PLANE 
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B. Yu. Bakhvalov, V. M. Eroshenko, 
L. I. Zaichik, and A. A. Klimov 

UDC 532.526 

An experimental and theoretical study is made of flow hydrodynamics in a plane 
channel with a permeable wall. 

Problems on gas flow in channels with permeable walls arise in connection with the study 
of heat and mass transfer processes in heat pipes, in the pore cooling of gas-turbine blades, 
and in several other important practical applications. The hydrodynamics of a developed flow 
in a plane channel were examined in [1-5], while flow in the initial section of a channel 
with symmetrical two-sided injection through the walls was investigated in [6, 7]. The 
hydrodynamics of a flow in a long narrow channel with one-sided injection were studied in 
[8]. The present work obtains numerical solutions of motion equations and experimentally 
studies nonsymmetrical flow in a plane channel with one permeable wall. 

The motion equations, describing two-dimensional flow in an approximation of the 
boundary-layer theory, have the following form in dimensionless variables: 

a~ +. a~ =0, a~ a~ 

- 

- - ~ + u ~  _ = - - = - - +  
Og dx O} 2 

(i) 

(2) 

With a uniform velocity profile at the inlet section of the channel, the boundary con- 
ditions for Eqs. (i) and (2) will be 

(3) 

Figures i and 2 show results of numerical solution of systems (i) and (2), with bound- 
ary conditions (3), for different values of the parameter Re V. Figure i shows profiles of 
the axial velocity component, normalized by the mean velocity in the cross section of in- 
terest U = Uo(l + Revx), for Re V = 80. The velocity distribution is clearly S-shaped in the 
initial section of the channel (curves 2 and 3 in Fig. i), which is typical of flow in a 
boundary layer with injection [9]. As x increases, the point of inflection of the velocity 
profile becomes less distinct and the velocity distribution approaches the developed profile 
found from similarity solution of the motion equations. An increase in injection rate is 
accompanied by a shift in the velocity maximum toward the impermeable wall, and the distribu- 
tion of Ux approaches the limitingdistribution Ux = U sin (~y/2) [5]. Father from the channel 
inlet, the calculated velocity profiles agree with those measured in [8]. 
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